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Abstract

Neural networks represent a promising alternative to traditional *t approaches.

The development of analog optical implementations of neural networks such as the
multilayer perceptron with learning by backward error propagation (BEP) requires an
understanding of the noise sensitivity of such architectures. The objective of this
program is to study the effects of component and system noise on the performance of
such optical implementations. The method used is computer simulation.

In this first phase of the program, the one-hidden layer perceptron with back
propagation was simulated using a simplified, device-independent noise model. The
results point to a distinct noise threshold above which the learning mechanism is
corrupted. The efficiency of learning based on variations within back propagation and

on the initializing method was also studied.

In the next phase, a device-dependent noise model will be used. To this end a
plausible all-optical architecture capable of both the forward pass and backward error
propagation steps of training data presentation has been proposed. /

I)

iii



Table of Contents

Abstract iii

Table of Contents iv

I. Background 1

A. Program Motivation I

B. Program Goal 3

C. Statement of Work 4

1. Phase I: Simulation of the Noise Sensitivity of 4
Neural Net Models

2. Phase II: Simulations of Optical 5
Implementations of Selected Models

II. Taxonomy of neural networks and training methods 7

A. Categories of neural network models and model 7
selection philosophy

B. The backward error propagation model 7

III. Details of simulations of back propagation 9

A. Description of tool 9

B. Backward error propagation details 9

1. Gradient descent 11

2. Initial conditions 13

3. Creating Target Vectors for Classes 14

C. Simulation results 16

1. Noise 17

2. Updating methods and initial conditions , 19

D. Summary 20

IV. Plans for Phase II 22

A. Optical architecture for BEP .. 22

B. Exemplar-based systems 1 DHC T; , C 26

V. References 28

VI. Key Personnel . .. .... 30

VII. Conference Presentations fly-------------------. 31

Appendix A Program Listings 32

st

iiv



I. BACKGROUND

. A. Program Motivation

Neural networks are computers that are based on organizational and functional

principles of information processing systems found in nature, like the brain and retina.

Hence, neural nets consist of many analog processing elements that are denselyI interconnected and they are applied to problems such as sensor pre-processing, pattern

recognition/classification, and motor control. In neural networks, long-term information

is stored as interconnection weights which signify the efficacy of interaction between

neurons. Transient information is represented by the neural outputs, which, for a given

neuron, is a nonlinear function of its state of activation. Each neuron's state of

activation is determined by a number of factors: its external inputs, which are the

weighted outputs from other neurons; its previous states of activation; and other specific

and nonspecific global signals. The values of the interconnection weights change more

slowly than the neuron's state of activation. The gradual evolution of the

interconnection weights has been widely postulated as the primary learning mechanism

that makes animals adapt to a constantly changing environment. The proposed neural

net models for problem solving attempt to emulate these intriguing characteristics of

biological information processing systems. References 1, 2, and 3 contain the latest

work on neural net development.

The primary advantage of adaptive neural net problem solving approaches over

conventional methods is that the networks learn how to solve problems semi-

autonomously; from labeled or unlabeled training data, the network learning rules

calculate weights which will produce the appropriate outputs. Thus, there is no need for

standard artificial intelligence techniques like investigation of the nature of the problem

and extensive programming of solution strategies---all that is required is access to raw

data. This approach is especially useful in several scenarios: when designing systems

that can be applied'to a variety of problems with little modification; when the size and

complexity of the problem makes rule discovery by hand prohibitively expensive; when

rapid solution to a problem is desired; when the nature of the problem is dynamic; or

when it lb difficult to ascertain the structure of the problem due to noisy and/or

ditorted data.

1



I

Nonadaptive neural networks are programmed to solve specific problems. With

this approach, the appropriate set of weights and initial conditions are determined by the

user. Later, when inputs are presented, the state of the network converges to the proper

answer through the network dynamics. Since either extensive calculations must be
performed to find the appropriate set of weights or prior knowledge of the desired
processing must be used to simplify the network structure, a given network must be used

many times to justify the cost of its construction. 4 Hence, this type of network is most 3
suitable for sensor pre-processing type applications where the same operations must be

performed on many data sets. I
Optical systems have been proposed as candidates for neural network

implementation for a number of reasons. Foremost are the analog and parallel natures

of neural computation---optical systems have been employed for a number of years to

solve significant problems, like synthetic aperture radar imaging and RF spectrum I
analysis, with parallel, analog hardware. In addition, neural nets often require complex

and dense interconnections between the neurons---and interconnection and

communication are the primary advantages optics has over electronics. Finally, neural

nets require analog storage of interconnection weights that can be accessed and updated

in parallel and several 2-D and 3-D optical devices exist that can provide this I
functionality.

5'6

For analog optical numeric processors, the accuracy of the overall computation is

strongly dependent on the accuracy of the analog optical devices. When such numeric

processors were first proposed, the numeric computations considered for analog optical

systems were primarily linear (matrix operations) and the accuracy of devices was quite l

low; therefore, so was the accuracy of the overall processor. Hence, the available

applications were limited to those requiring low precision. This motivated the

investigation of analog optical systems for neural nets, which were postulated to require

low accuracy computation. The first neural network that optics researchers chose to
implement, the Hopfield model, 7 ' 8 was indeed relatively insensitive to inaccuracies in I
the response of the analog components. As it turns out, the very features of the

Hopfield model that make it relatively insensitive to inaccurate components, namely the 3
particular type of distributed and redundant storage/computation, also limits its storage

capacity, and hence. its utility. 3

2 I



Since the publication of the Hopfield model, there has been a number of

potentially useful neural network models reported in the literature along with proposals

for their optical implementation. 9 However, it has been commonly assumed that since

the Hopfield model was relatively impervious to hardware imprecision, so are these other

models. This is not necessarily true---each model must be examined closely to

determine its own sensitivity to analog hardware imprecision. Since many modern neural

net models improve upon the storage capacity of the Hopfield model by means of less

redundant storage techniques, they may lead to systems which are more sensitive to

noise. Except for a few models, most notably those examined in our previous work, the

noise tolerance of neural network models is unknown. Dependence of the noise

sensitivity on the size of a given neural net model is an issue of great concern since the

neural net approach to problem solving may become competitive with conventional

approaches only when the network is very large.

It is clear from the above discussion that the detailed study of a neural network

when implemented in any analog technology (optical or electronic) is of critical

importance. Without an adequate understanding of neural nets, the success of the neural

net research endeavor itself can be jeopardized.

B. Program Goal

The main goal of the proposed research program is to study the effects of

component and system noise on the performance of optical implementations of selected

neural net models. The noise could be due to variations in the response of different

components, finite accuracy in controlling signal amplitudes, or signal- and time-

dependent noise due to quantum and thermal fluctuations. It is suspected that the

tightest bounds on the size and speed of optically implemented neural nets will come

from these noise sources rather than the scaling limits of optical technology. Since the

size and speed of neural net processors will be factors that influence their utility, the

results of this stud, will be critical in determining the ultimate applicability of optical

neural nets. The identification of those parts of the neural net model that are

particularly sensitive to system noise will stimulate investigations into new techniques of

data representations and formatting to increase the robustness of the models. Similarly,

the identification of the limiting devices or materials in the optical implementation of

the selected neural net models will lead to exploration of different technological and

architectural alternatives for improved performance.

3
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C. Statement of Work

This report covers the first phase and year of a two-year two-phase research and I
development program to quantitatively study the effects of system noise on the

performance of optical neural net processors. The first phase is concerned with the 3
noise effects on neural nets without regard to technological implementation. The second

phase is focusing on the noise effects in optical implementations. The two phases are,

however, intimately coupled and the results from the first phase will provide the

foundation for the second phase. Following is the detailed breakdown of each phase

into tasks and a description of the goal of each task. Although Phase II is not reported

in this final report, its tasks are included below for completeness and continuity. 3
1. Phase I: Simulation of the Noise Sensitivity of Neural Net Models

In this phase, a technology-independent analysis of the noise sensitivity of

selected neural net models was performed. This phase was divided into the following 3
tasks.

a. Task 1.1: Selection of Neural Net Models I

Given the explosion in the number of different neural net models that have been l

proposed over the last four years, it is critical that this research effort be focused on a

few selected models. Examples will be selected from both adaptive and non-adaptive

networks. The potential for optical implementation will be an important criterion for

selection. Another critical factor will be the successful and competitive application of

the model to an important problem. The backward error propagation, higher-order

threshold logic units, and MAXNET are candidate network models. 1
b. Task 1.2: Identification and Analysis of the Functional Units of the Neural Net

Models

Processing elements (or neurons) and interconnection weights are the two 3
ubiquitous functional units of any neural net model. The operational characteristics of

these functional units also vary widely for different models, such as the bidirectional l
neuron for the backward error propagation model, whose transfer function depends on

the direction of signal flow. In this task the exact operation of these functional units p
4 I



will be detailed and the parameters for statistical variations will be selected. Although

this phase is meant to perform technology independent analysis, it is clear that the

selection of the parameters will be influenced by the potential physical realization.

c. Task 1.3: Computer Simulations of the Neural Net Models with Statistical

Variation

This is the heart of the first phase. In this task, quantifiable performance

metrics will first be identified for specific applications. Simulations of the selected

neural net models will be performed with different degrees of statistical variations in the

functional units. The noise sensitivity will also be studied as a function of the network

size and the statistics of the inputs. These simulations will provide a good idea about

the impact of noise in different functional units on the network.

2. Phase II: Simulations of Optical Implementations of Selected Models

The neural net models studied in the first phase will now be mapped onto optical

technology. The results of the previous task will provide the foundation upon which the

work in this phase will be built as described in the following task description.

a. Task 11.1: Optical Implementation of the Functional Components

In this task, we will identify several potential optical implementations of the

functional units of the neural nets that were identified in Task 1.2. Then we will

establish a connection between the statistical parameters chosen in Task 1.2 and the

physical parameters associated with their optical implementation. This, in effect, will be

the first step toward applying the results from the previous tasks to analyzing optical

neural net processors. The source of statistical variations in these optical components

will then be identified and modeled. The underlying statistical distribution for the

optical components "is likely to be significantly different from that assumed in Task 1.2.

Therefore, the results from the previous simulations may not be directly transferable to

the optical domain.

b. Task 11.2: Conceptual Design of the Optical Neural Net Processor

5
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The optical functional units identified in the previous task will now be integrated 1
conceptually to design an optical neural net processor. The issue of compatibility

between different optical technologies chosen for the functional units is the critical issue I
here. In this step, the interface subsystems needed to assemble the optical neural net

processor will be identified and modelled. BDM will not attempt a detailed engineering 3
design of the processor, since that in itself will be a separate research project and well

beyond the scope of the proposed program. We will, however, work closely with other 3
research groups in the country in developing a realistic view of the fully implemented

system. i

c. Task 11.3: Simulation of the Optical Neural Net Processor

In this task, the conceptual design of the optical neural net processor will be

fully simulated by incorporating the statistical models for the optical components in the

neural net simulations developed during the first phase. Similar to task 1.3, these

simulations will be performed as a function of the network size and input signal 5
statistics. In this task, however, the performance of the optical components and

subsystems will be strongly governed by the network size and hence will affect the noise

sensitivity of the processor even more strongly. The result of this simulation will

determine the realistic limits on the size, complexity and speed of the optical neural net

processor that can be realistically built with the current technology, and the 5
technological improvements that will be needed in order to make it of practical

importance. 3

6I
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II. TAXONOMY OF NEURAL NETWORKS AND TRAINING METHODS

A. Categories of neural network models and model selection philosophy

Neural network models can be designed to perform several operations, e.g.,

associative memory, optimization, filtering, pattern classification. The performance

criteria for a given model are determined by its intended application. We choose neural

pattern classifiers for further investigation under this program. For these models one

performance criterion is simply the number of training or test patterns the model

misclassifies. Another is corruption of the learning curve during training. The effect of

system noise on the selected neural net classifiers is investigated using the above-

mentioned criteria.

Neural net models can be categorized according to several different parameters.

The first one of these parameters is the topology of the neural net (single or multiple

layers of processing elements). The second one is the processing element response

(linear, hardclipping nonlinear, or continuous nonlinear). The third parameter de-!- with

the selection of learning algorithm. Error-driven algorithms can be used with labeled

training data consisting of input patterns along with their correct classification.

Unlabeled training data uses self-organizing algorithms capable of autonomously

clustering the input patterns into distinct classes and adjusting the internal parameters of

the neural net to generate the desired classification.

The limitations of a single layer neural net model in classification have been well

documented. 10  Hence we have selected a multilayer neural net classifier. It can be

readily seen that a linear processing element response reduces a multilayer neural net to

an equivalent single layer neural net thereby suffering from the same limitations.

Therefore we have chosen a nonlinear (hardclipping or continuous) response for the

processing element. For the purpose of this study we choose the error-driven learning

algorithms that are used with labeled training data. The self-organizing systems were

not selected because optical implementations for them are relatively less developed.

B. Backward error propagation model

The most prominent multilayer, nonlinear, error-driven neural net is the

multilayer perceptron trained by the method of backward error propagation (BEP). 11

7
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This is a least mean-square error .. proach that uses a gradient descent algorithm. The

internal parameters of the neural net (the connection weights and processing element

thresholds) are modified such that the new weights lead to a decrease in the total mean-

square error. This model is a direct descendant of the Wid:ow-Hoff Adaline model that

was developed for a linear, single layer neural net model. 12 It has also been successfully 5
applied to interesting problems such as distinguishing underwater man-made objects

from natural ones based on their sonar returns 1 3 an, solar flare prediction. 14  3
The BEP model uses a continuously differentiable nonlinear response for the £

processing element. Therefore the signals propagating between different layers are fully

analog. This will lead to error accumulation. This feature makes the issue of system

noise particularly relevant to the BEP model and hence appropriate for this study. Fully

optical implementations of BEP rpae have been proposed. 15  Hybrid optizal-digitai

electronic systems have also been proposed in which part of the training procedure is 1
performed in an auxiliary digital electronic processor. 16 1 7  The effect of weight

quantization on the learning performance of a BEP modcl has been previously

reported. 1 7 ' 18  These studies were specifically geared towards optical or electronic

implementation in which the connections were stored electronically in a digital

representation. The current study extends that work to quantify the effects of analog

system noise in the weights as well as in the processing element computation.

I

I
1

I
U
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III. DETAILS OF SIMULATIONS OF BACK PROPAGATION

A. Description of tool

Throughout Phase I, our goal has been two-fold: one, to understand the

dynamics of a multilayer perceptron which is learning by back propagation of errors;

and two, to observe the effects of noise on these dynamics.

To these ends we have been using PC-Matlab as a programming and analysis

tool. PC-Matlab works with 1-D and 2-D variables. When it is running an ".m" file (a

program), it can display in text or graphical form the ever-changing state of the

network. Information such as a learning curve can be stored in a ".mat" file.

The core of our simulation program is found in two modules, "binit.m" and

"bctrain.m." These modules are written specifically for the case of one hidden layer,

although it is simple to modify them to add layers. Among other tasks, "binit.m" loads

the training data, initializes the weights and biases, and sets up the beginning of a

training session. Then "bctrain."m iteratively updates the weights, tracks the mean-

square error, and provides for early termination of training upon fulfillment of a

convergence criterion. Note that a training seed (trseed) is used with Matlab's random

number generator, so that an identical set of "random" noise spikes may be used in

different runs, if desired.

These two program modules run as though the hidden layer size, initializing

criteria, the learning rate, and when training should terminate are already defined in

PC-Matlab's work space. A ".m" file called "bframe."m prompts for these data so that

"binit.m" and "btrain.m" may be run without causing undefined-variable errors.

These three ".m" files, as well as some of the nested ".m" files, are listed in

Appendix A.

B. Backward error propagation details

To provide a deeper understanding of the simulation tools, we shall now describe

exactly how back propagation proceeds, giving due attention to the order followed in

updating. Back propagation is defined for a multilayer perceptron, a neural network

9
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containing nodes configured in an input layer, a number of hidden layers, and an output

layer. The multilayer perceptron, whether or not it has learned, performs an evaluation

of the inputs via a forward pass. First, the input elements are multiplied by the weights;

then they are summed and transformed ("thresholding") by a sigmoid nonlinearity in the

hidden nodes. The outputs of the hidden nodes are processed in similar fashion. A

one-hidden-layer architecture is shown in Figure 1. (Strictly speaking, the input layer

units are not full-fledged nodes. They do not perform summing and thresholding; they I
simply broadcast the input signals to the nodes in the hidden layer. Therefore, many

call this a two-layer network.) The inputs and outputs (o terms) are unipolar, due to the

thresholding; in some cases, the inputs may be restricted to binary values. The weights

and biases are bipolar and continuous. 3
U
I

Hidden layer Output layer

01(l) 
1eoj( 1 ) )

E I
oetk(K ok I

E Z

I

wjo ) 7Wkj(J,K) I Ok(K)

I1I Oj(J)

Figure 1. A perceptron with one hidden layer 3
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1. Gradient descent

Back propagation rests entirely upon a derivation of the conditions required for
gradient descent. 11 This term refers to a weight (and bias) update

AW ox -OElaw where E = E (trk-Ork)2

r k

trk being the target vector's kth element for the rth training pair. That is, the weight

update is supposed to move the weights in a direction in weight space in which the

mean-square error over all training pairs decreases the most. This requires knowledge of

the error in the output as well as the error in the internal representation. Back

propagation represents the first successful method for calculating the latter error, which

cannot be calculated directly since the target values for internal representation are not

known a priori.

The steps in back propagation follow. These are specifically for the case where

the thresholding ("activation function") is a sigmoid. The derivative of the activation

function dictated by back propagation is manifest in the o(l-o) terms. In the PC-Matlab

modules, oi is a rcwv vector of length I; Netj, o. 1j, and 6j are row vectors of length J,

and similarly for k. The variable 1 is called the learning rate. In matrices, a comma

denotes concatenation along columns, a semicolon along rows.

Forward Pass

1. Netj = [oi, 1] x [Wji ;Oj] oj = 1/(1 + exp(-Netj))

2. Netk = [o1 i , 11 x [Wkj ; Ok] k = 1/(1 + exp(-Netk))

Backward Error Propagation

3. 6k  ok (l-ok) (k-ok)

4. 6j = oj (l-oj) (6 k x WkjT)

5. AWkj 17 x ojT x 6k AOk = ?7 x 6k

6. AWji n x oi T x 6j AOj = 7 x 6j

11
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The derivation, as presented in Rumelhart's seminal paper, leaves some

questions open. The first is, are the weights and biases to be updated after presentation

of each training pair (pairwise updating)? Or are the weight changes to be accumulated I
in a separate register over the entire epoch of training pairs and then added to the

weights (accumulated updating)? Rumelhart states (in text, not math) that the true 3
gradient descent calls for the latter. Some researchers advocate pairwise updating as a

means to improved performance. The listings in Appendix A are for the method of 3
accumulated updating.

The second question is, if the weights are updated after each training pair, I
should the sequence of steps be 3, 4, 5, 6 or 3, 5, 4, 6? In the latter (layered updating),

the Wkj's are updated, and then the error 6k is propagated through them (step 4). We I
believe, although it isn't explicitly stated, that the former approach (unlayered updating)

is closer to gradient descent. The difference between layered and unlayered updating is 3
often minor; be aware that for any one backward pass, only the hidden layer's weights

are updated differently.

Recall what gradient descent means: the weights change in the direction of

greatest decrease in the total mean-square error. True gradient descent requires I
infinitesimal weight changes. For larger weight changes, a decrease in mean-square

error is not guaranteed. A n error landscape may be convoluted, and an update may I
move the weights too far, to a point where the error is higher. In other words, a large

learning rate can create oscillations in the plot of mean-square error vs. epoch. A

convoluted landscape possesses local minima, which can halt convergence, with the

network stuck in an unsolved state.

These problems are often remedied by incorporating a momentum term a which

introduces a component of the previous weight change into the current one. Step 5 I
above becomes

AWkI(n) = 17 x ojT x 6k + aAWkj(n-l)

A~k(n) - r x 6k + caAk(n-l) 3
and similarly for the hidden layer, where n tabulates the actual update, whether it was

pairwise or not. According to Gilbert, 18 momentum is used in pairwise training to

I
12 I



incorporate information about the previous pair, making training based on more

complete information.

2. Initial conditions.

The convergence behavior produced by the back propagation algorithm depends

on the initial values of the weights and biases. If all these start out equal, the algorithm

keeps them so, and the network will not learn. Rumelhart's solution is to initialize the

weights and biases with small random values, to provide symmetry breaking. He does

not state what "small" means, however.

Is there a more intelligent way to initialize the weights? Our desire is a

configuration which helps the network to solution, but is not specific to any one

problem (does not "cheat"). Sheldon Gilbert 18 proposes one method based on

Lippmann's 19 discussions on internal representations.

A network which has learned XOR is shown in Figure 2. Figure 3 shows the

output of the upper, j = 1, hidden unit (vertical axis) as a function of the two inputs

(horizontal axes). The magnitude of the input weight vector determines the steepness of

the output---how close the "hill" of Figure 3 is to being a step function. The

associated decision line, a one-dimensional hyperplane, is just the intersection of this

output with the plane oj(l) = 0.5. Each hidden unit in Figure 2 is labeled with a

diagram of its decision region, showing this decision line. The arrow indicates in which

half-plane the output is greater than 0.5. Note that the dividing decision lines actually

pass through the decision region.

Gilbert's method starts with initially random weights and biases, and scales the

weight vectors to a uniform value. Then it adjusts the biases so that the dividing

hyperplane passes through (0.5, 0.5,...,0.5)---the middle of the decision region. Next,

the weights to the dutput layer are all set to 1/J, so that, regardless of the size of J, the

output units start out with reasonably-sized Netk's. For example, even if the initial

oj = [1, l...l], each Netk term (with 0k = 0) will be only J x (l x l/J) = 1, well within

the linear region of the sigmoid defined in Equation 2. (In point of fact, we have

initialized the Ok terms to small random values within [-0.5, 0.5] in our simulations.) In

the simulations that Gilbert performed on 2-D problems, the initializing algorithm went

on to force the dividing lines to span 3600. We chose to omit this latter restriction for

13
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two reasons: first, it seems too "forced" for typical problems, and second, it encourages

deciding which dividing lines should run which way in input space, the answer to which 3
is best found by already knowing the final state of the solved net.

Oj1)-4.61 1 20 E 1 I

01i I

6.40

Figure 2. A J - 2 solved XOR configuration

3. Creating Target Vectors for Classes

For classification problems, one can express the classes one of two ways. TheI

first way uses a dedicated output node for each class. A typical training pair has an

input vector and an output vector with all elements low except for that corresponding to

the correct class. The second way uses a binary representation for each class. Here a

four-class problem could be implemented with two instead of four output nodes. 3
In addition, how the output training vector expresses "high" and "low" is

important. Since the activation function asymptotically approaches 0 and 1, using these

in the training vector may cause excessively large error signals to be propagated back.

14 I
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0.5 o (1 = .

0

Figure 3. The output of the j - I hidden unit as a function of the inputs to the
XOR network
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All of our simulations were two-class problems, where we used K = 1 (binary

representation). Also, unless otherwise noted, we trained our output on (0.1, 0.9) rather

than (0, 1) to avoid the excessive error signals.

C. Simulation results I

While the initial simulations with noise are based on a simplified noise model, 3
they are inspired by a realistic architecture. From the outset, we realized that the

storage requirements imposed by the use of the momentum term would greatly

complicate any optical implementation. Having observed that the algorithm converges

reasonably well with ot = 0, we chose to omit it. 3
The majority of our simulations are based upon pairwise layered updating during

training. The only all-optical multilayered neural net architecture ever proposed, one

based using a photorefractive volume hologram to store weights, implements this sort of

training.20

Figure 4 shows a typical learning curve for XOR with layered updating, J = 2, 1
= 2, and weights and biases initially spread randomly with a uniform distribution

within [-0.5, 0.5] The curve is characterized by a rapid descent, a slight leveling off

("plateau") and then a continued descent. The J = 2 XOR error landscape contains local

minima. We have observed a probability of convergence of about 0.6.

1 I

0.8 \

0.61

0.4 O

0.2

0I020400 600oo 80 10 10 10
cycle

Figure 4. Learning curve for XOR with J - 2, ri , 2, with pairwise layered I
updating of the weights

I
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1. Noise

The noise was assumed to be additive; small random numbers were added to the

weights and biases after every update. Unless otherwise stated, the random numbers

were normally distributed.

At first, we ran a large grid of simulations, to observe the effects of noise on the

learning curve as a function of three parameters: which of five sets of initial conditions

were used, which of fifteen training seeds were used, and at which of three noise values

(standard deviation a = 0.2, 0.25, and 0.3).

In the learning curves, we saw that these noise values were indeed large. Noise

seemed to hasten some convergences, delay others, and create stuck conditions in still

others. We also noticed that a given training seed leaves a unique "signature" upon the

learning curve, giving the spikes therein the same appearance among different a's and

among different initial conditions.

In our next large group of runs, we simply let each simulation terminate when

the mean-square error had dropped to 0.1. Letting each run having noise use a different

training seed, we tracked terminal n values to fill in the data table represented in

Figure 5. In the table, each row of data corresponds to a different initial condition (i.c.)

set. If n reached 2000, we assumed that the network was stuck in a local minimum.

aI  ... al0

O'=0 TRIAL TRIAL ... TRIAL
1 2 10

i.c. I
i.c. 2

i.c. 10

i.c. 11

i.c. 100

Figure 5. Data table for noise sensitivity analysis

Using the first column corresponding to each a, we prepared the data table in

Figure 6. The data from the first ten rows of each a were used as a consistency check.
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I
Our metric for the effects of noise was this: How many of the runs that were stuck I
with no noise became "unstuck" by the noise? And how many "unstuck" runs became

stuck? 3
a 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20 0.22

# s-c 2 4 7 13 16 17 20 17 18 21
# c-s 3 6 7 15 20 25 29 27 25 26

Figure 6. Numbers of significant changes in learning curves induced by noise, I
based only on TRIAL 1 data (out of 100 runs)

As the data show, both changes increase in number for noise values above I
a = 0.08. 3

We observed that in any run, the weights and biases start out at small values.

These increase in magnitude during the course of the run until they asymptotically 5
converge upon a final configuration. We theorized that noise's chief mechanism of

corruption of the learning curve might well amount to a change in initial conditions. If 3
this is true, then delaying the onset of noise until the weights have had time to increase

to a more robust configuration should give rise to a greater apparent noise immunity. 3
This conveniently delayed noise is not so far-fetched; it is almost akin to signal-

dependent noise. I

Using the same a values as before, we modified the algorithm for noise

introduction. Recall Figure 4. We inserted in "btrain.m" a step that computes the 3
derivative (a mse/a cycle) of the learning curve. When the middle plateau is reached,

a mse/c9 cycle reaches a local maximum, and the noise is introduced. In all, twenty-five 3
sets of initial conditions were used.

In some cases, entrapment in a local minimum in the noiseless case caused the I
algorithm to never call for the noise in the first place. But in twenty-one cases, the

noise did initiate; of these, eight were stuck in the noiseless case.

Figure 7 shows the number of stuck-to-converged and converged-to-stuck 3
occurrences for each noise level. Note that the noise level for significant changes

appears to have moved up from a -0.08 to greater than a = 0.25, verifying th," greater 3
robustness has set in by this point in training.
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a 0.04 0.08 0.12 0.16 0.20 0.25 0.30 0.35 0.40

# S-C 1 1 2 3 0 2 3 4 6
# c-s 0 0 3 2 4 1 4 7 5

Figure 7. Numbers of significant changes in learning curves induced by delayed
noise (out of 22 runs)

Is accumulated updating perhaps less sensitive to noise? One might expect this

since updates are less frequent. We tested this hypothesis using the same noise values as

for pairwise layered updating. With the same metric, we assembled the data table in

Figure 8.

a 0.04 0.08 0.12 0.16 0.20 0.25 0.30 0.35 0.40

# s-c 1 1 2 2 2 2 2 1 1
# c-s 0 0 1 1 4 3 3 4 4

Figure 8. Numbers of significant changes in learning curves induced by noise (out
of 15 runs)

As the table shows, the noise shows a significant increase in it effect for a values

of greater than 0.16. Recall that for layered updating, the crucial noise value fell

around 0.08. Indeed, accumulated updating is the more robust.

We took similar data for delayed noise introduction. These data are less

conclusive. The learning curve for accumulated updating is not characterized by a

plateau with an inflection. We had to settle for simply introducing the noise when the

mean-square error fell below a certain value. We tried 0.639 on some trial runs, but we

do not know that these results can be compared to the runs for delayed noise in pairwise

layered updating.

2. Updating methods and initial conditions

For five sets of initial conditions, we ran the J - 2 XOR problem with 17 = 2,

using accumulated updating, pairwise layered updating, and pairwise unlayered updating.

The average time to convergence was longest for accumulated updating, but it wasn't

consistently the longest for each of the five cases. The average time to convergence was

shortest for pairwise layered updating. Generally, the learning curves for accumulated
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updating were the smoothest; the pairwise learning curves had more inflections,

especially the pairwise layered. 3
We repeated this experiment using Gilbert's method of initializing. This time,

the times to convergence varied little between the updating methods. On the whole, this l
initializing more than halved convergence time. I

We found similar results when we repeated both experiments running the J = 4

2-D corners problem with r = 0.4. Figure 9 shows the targets as a function of the I

input space for this problem. Layered updating was usually the fastest, and Gilbert's

method considerably shortened the time to convergence. 5
I

oi(2)

f X M

x xxiii~iiiiiiiiiii~::~iiii;i xX , ok=[O] I_

0 1

Figure 9. Training data for the 2-D corners problemI

D. Summary i

The Matlab'program modules have enabled us to run simulations of the back 3
propagation algorithm using a simplified additive noise model. In addition, we have

learned much about the back propagation model itself. Specifically, the order of steps in 3-
the updating procedure, which is borne out by the optical implementation, has much to

do with convergence speed and whether or not gradient descent is actually beingi

performed. Although it is the farthest from gradient descent, pairwise layered updating -
converges the fastest.3
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One must also choose a suitable learning rate, large enough to speed performance

without oscillations through the error landscape. Oscillations and entrapment in local

minima can be avoided using the momentum term a, but this does not lend itself well to

optics. It is also wise to choose targets away from the asymptotic tails of the threshold

function.

Performance is dramatically improved by initializing the weights so that the

dividing hyperplanes created by the hidden units cross the center of the input vector

space, and normalizing the weight vector magnitudes.

In our simulations using pairwise layered updating on to solve XOR with J = 2

and Y7 = 2, we observed significant degradation with simple additive noise having

a = 0.08. Greater noise levels (a = 0.25) can be allowed if its onset is suitably delayed in

the learning period. Accumulated updating is less noise sensitive; with noise always

present, degradation becomes significant at a >_ 0.16.
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IV. PLANS FOR PHASE II

A. Optical architecture for BEP I

The simulation of a true optical neural net will incorporate more than simply 3
additive noise applied to the weights and biases after update. It is necessary to take into

account noise introduced by sources, modulators, and detectors. This requires designing 3
an architecture capable of handling the whole process, including the forward pass, error

back propagation, accumulation of the AW's over the epoch, and addition of them at the

end. The architecture need not be optimum, only plausible.

Our hypothetical architecture uses optics to perform operations of O(N 2), where I
N is the typical layer size, e.g., 1, J or K; other operations may take place in the

electrical domain. The inputs and weight/bias matrices are assumed to be implemented as 5
spatial light modulators (SLMs).

Figure 10 shows our multilayer perceptron architecture for a net in which I = 3,

J = 4 and K = 2. SLMs are represented as unshaded planar regions; detectors are shown

shaded. Thick arrows represent the propagation of information-carrying light; thin

arrows refer to signals in the electrical domain. For simplicity, the figure does not

include the necessary cylindrical and spherical imaging lenses, nor the switchable 3
birefringent wave plates needed to direct light the proper way using the polarizing

beamsplitters. Wherever possible, we have striven to use the same weights in backward 3
as in forward passes. This saves hardware and reduces noise accumulation.

As depicted in Figure 10, the architecture is performing a forward pass. Recall

the governing equations presented in Section III. B. 1. The forward passes are vector-

matrix multiplies shown in Figure 10 by light gray left-to-right arrows. While the
inputs oi and oj are unipolar and restricted to the interval [0, 1], the weights and biases

are bipolar and can' have larger magnitudes. We have tracked the weights and biases 3
through simulations on 2-D and 5-D problems and seen values as large as 15. Since the

SLMs do not amplify, we let them express values Wji/a, where a is a suitably chosen 3
constant, say, 15. Also, we have divided the matrix elements into positive and negative

subelements. The Netj and Netk are also so divided. The subtraction of Net(-) from I
Net(+) is performed electronically. The thresholding elements incorporate sigmoids

which are a steep, thus performing the operation
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Figure 10. The proposed multilayer perceptron architecture for 1 3, J =4 and
K - 2, performing a forward pass
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oj 1/(1 + exp(a x -Net jia)) = 1/(1 + exp(-Netj)) 1
and similarly for Ok. I

Figure 11 shows the same architecture, now performing backward propagation of I
errors. The error term 6k is computed electronically (bottom of Figure 11). Note that
6k is bipolar and usually small. In the above simulations, the largest element never 3
exceeded 0.16. To better utilize the full range of the I-D SLMs, we multiply 6k by a

constant b. Note that 6kb is sent to two SLMs, one with + and - subelements, one not. 3
The former SLM is to be used for computing the outer product as in Equation 5 of the

governing equations. 3
The latter SLM is for calculating the vector matrix multiply inside Equation 4.

This requires dividing the Wkj elements horizontally as shown. As depicted by the dark 3
gray arrow in Figure 11, the operation

IVkjT/a x 6kb

occurs in two passes, one for each sign of 6k. In the first pass, 6k(+) is presented; each U
element of the receiving detector will evaluate two terms, positive and negative. In the

second pass, when 6k(-) is presented, the formerly positive subelement now receives a U
negative term U

(6kb(-) x WkjT/a(+))

--- and vice versa. The receiving detector must be "smart" enough to handle this sign

interchange. 3
When this vector matrix multiply is complete, 6j (from the rest of Equation 4)

can be computed. I

With 6k and 6j computed, all that remains is two outer products (Equations 5 and 5
6). These use the light paths shown in black arrows. The receiving SLMs perform

accumulation over the epoch by time integration. Here the operation multiplies bipolar- 3
by-unipolar, as in the forward passes. At the end ot the epoch, the accumulated AWji

I
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Figure 11. The proposed multilayer perceptron architecture performing backward
error propagation
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and AWkj are to be added to the weight matrices themselves, which are presumably
"smart" SLMs with capacitive storage. The light paths for this operation are not shown. 5

The Phase II simulations will incorporate opto-electronic noise caused by the

various transductions in the architecture. In addition to random noise such as shot and I
thermal noise, the effects of fixed pattern noise, as from nonuniformity and limited

contrast ratio, will be included. 3
B. Exemplar-based systems 3

The BEP model for a neural net classifier separates the input patterns by a series

of hyperplanes. Recall Figure 2, which shows such a hyperplane classifier for a 2-D

input pattern. Each of the hyperplanes is associated with a hidden processing element

and the orientation and location of the hyperplane is completely specified by the weight I

vector associated with that processing element. One or more layers of hidden processing

elements are needed to form an arbitrary decision boundary via intersections of half

spaces. 19 The BEP classifier is characterized by a long training interval in which the

training pairs have to be presented as many as several thousand times before the correct

weight vectors are identified. This learning procedure also has the tendency to get stuck

in a local minimum for the total error function. On the other hand the number of

processing elements (and hence the total weight storage requirement) is independent of I
the number of exemplars, i.e., training input patterns. The BEP learning procedure,

thus, makes efficient use of resources. 3
Another category of neural net classifiers with different tradeoffs is termed

exemplar-based classifiers.21 The weight vectors associated with the processing elements

in the first layer simply represent the input patterns (exemplars). The subsequent layers

then group outputs from the first layer processing elements and make a classification

decision. The subsequent processing differs between k-nearest neighbor classifiers, 2 2' 2 3

Restricted Coulomb Energy classifiers24 ' 25 or Radial Basis Function Classifiers. 26' 2 7  3
The common characteristic of these models is that they have high storage requirements

(proportional to the exemplars in the training set) but short training times. The error 3
signals in the training cycle are used mainly to adjust the weights in the subsequent

layers or some simple parameters (e.g., the size of the basin of attraction) associated with 3
the processing elements in the first layer.

I
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It appears that the tradeoffs associated the exemplar-based classifiers are much

more suited to optical technology that provides large storage capacity but poor

computational accuracy. In the second phase we will select one of the exemplar-based

classifiers for further study. Optical processors can be restricted to the first or second

layer of the neural net performing the computationally intensive operations. High

precision analog or digital electronics can be used in the final layers that perform the

classification. The comparison between optical implemented BEP classifiers and hybrid

opto-electronic exemplar-based classifiers on identical problems and with identical

hardware limitations will be performed during the second phase of this contract.
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Abstract

Computer simulations reveal the effects of noise in optical weight matrix

elements, updated by back propagation, upon the learning curve characteristics.

Summary

The back propagation algorithm I has become increasingly popular in the neural

net research community. Various optical implementations have been proposed, with the

hope of increased performance via the parallelism of optics. Realistic models of opto-

electronic implementations must include the effects of noise. While noise often
"anneals," increasing the convergence rate, excessive noise can effectively transform any

updating algorithm into a random search among weight configurations. For the purpose

of evaluating the effects of component noise on the performance of the back

propagation algorithm, we have developed a simulation program which allows insertion

of noise terms wherever appropriate. The program introduces noise processes into the

weight updating process during the learning phase. The learning curve is defined as the

mean-square error vs. iteration number; our analysis emphasizes examination of learning

curves rather than simply probability of convergence. In this paper we describe the

behavior and noise tolerance of back propagation as related to hidden layer size, learning

rate, and initial conditions.

1. D. E. Rumelhart, G. E. Hinton, and R. J. Williams, "Learning internal
representations by error propagation," in Parallel Distributed Processing, vol. 1, D. E.
Rumelhart and J. L. McClelland, Eds. Cambridge, MA: M.I.T. Press, 1986, pp. 318-
362.

31



APPENDIX A. PROGRAM LISTINGS3

bframeI
% bframe script
disp('This lets you run binit and btrain by having')I
disp('you put in all the necessary variables beforehand.')
J=input('Enter J: ');
icseed-input('Enter icseed:')
spread=input('Enter the initial condition spread:')
smartinit-input('Enter I to initialize by method of Gilbert:')
quan=input('Enter 0 to not quantize, I to quantize:')
if quan=-l

ss=input(' Enter the step size:')
hr=input(' Enter the upper (and -lower) bound: )

endI
eta=input('Enter eta: )
N=input('Enter N: ');
DN=input('Enter DN:')I
msetol=input('Enter the mse below which training stops:')
% We will keep quan (and ss and hr) the same in training
% as during binit.
inject-input('Enter 0 for no noise; 1, uniform; 2, Gaussian:')U
if inject-=

nspread=input(' Enter the noise spread:')
elseif inject==2I

var=input(' Enter the variance:')
end
mix=input('Enter I to mix up presentation order:')3
if ((mix== I )I(inject-=O))

trseed-input('Enter trseed: )
end3

binit.m

% binit script3
% The following variables must be known:
% J, icseed, spread, quan (and ss & hr if
% quan-l), and eta (alpha is not used).
load bpinI
load bpout
I-ncols(bpin)
K-ncols(bpout)I
R-nrows(bpout)
if exist('keepWji')

Wji-keepWji; THETAj-keepTHETAj;
Wkj-KcpWkj; THETA k-keepTHETA k;

else
% Initialize the weights and biases
% random numbers about zero centerI
rand('uniform')
rand('seed',icseed)3
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rand(1I,3); % to exercise generator
Wji=(rand(I,J)- 1 ./2)*spread
THETAj=(rand( 1,J)- I ./2)*spread
Wkj=(rand(J,K)- I ./2)*spread;
THETAk=(rand( I,K)- I ./2)*spread;
if smartinit== 1

" the Wji
% numerator is predet. magnitude of weights vector
" which's normal to dividing hyperplane (line for I=2)
x=l ./sqrt(sum(Wj i.A 2))
Wji=(ones(I, I )*X.A2).*Wji
% the THETAj
THETAj=-O.5*sum(Wji)
% the Wkj
Wkj=( 1 /J)*ones(J,K)

end
keepWji=Wji; keepTHETAj=THETAj;
keepWkj=Wkj; keepTHETAk=THETAk;
if quan==lI

levels=2*hr/ss+ 1
Wj i-discret(Wji,ss,hr);
THETAj=discret(THETAj ,ss,hr);
Wkj=discret(Wkj ,ss,hr);
THETA k=discret(THETAk,ss, hr);

end
end
" Preparation for mse calculation
% the zeroth- iteration column for mse
n=0;
% MSE CALCULATION
% Forward Pass
NETj=[bpin,ones(R, 1)1*[Wii;THETAj]
Oj=l ./(l+exp(-NETj))
NETk=[Oj ,ones(R, 1 )][Wkj;THETAk]
Ok=l ./(l+exp(-NETk))
detmse(l1)=sum(meanc((Ok-bpout). 2));
ldetmse(lI)=detmse( I); % literally, less detailed mse

% this f irst one's not an average
noff(l)=sum(sum((abs(Ok-bpout)>0.4))); % assumes (0.1, 0.9)

% targets

bctrain.mn

" bctrain script
" Accumulates weight change over epoch, THEN updates...
" The following variables, in addition to those created
% by binit, must be known:
% N, DN, msetol,
% quan (anew for training) (and ss & hr if quan-l),
% inject (and nsprd for uniform if inject-I and var for
% normal if inject-2), trseed (if inject-0),
if quan--l

levels-2*hr/ss+ I
Wji-discret(Wj i,ss,hr);
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THETAj-discret(THETAj ,ss,hr);
Wkj=discret(Wkj ,ss,hr);
THETA k=discret(THETA k,ss, hr);

end
if inject==I

rand('uniform') % just in case it isn't
end
if inject==2

rand('normal')
end
if ((n==O)&(inject-=O))I

rand('seed' ,trseed)
end
stop=n+N;I
while n<stop

n=n+l1;
DWkj=zeros(J,K);
DTHETAk=zeros( 1,K);I
DWji=zeros(I,J);
DTHETIAj=zeros( 1,J);
for r=lI:RI

% presentation order irrelevant
% Forward Pass
NETj(r,:)=[bpin(r,:), 1 1*[Wi;THETAiI;
Qj(r,:)= 1 .1(1 +exp(-NETj(r,:)));
NETk(r,:)=[Oj(r,:), 1 I*[Wkj;THETAkI;
Ok(r,:)=I ./( l+exp(-NETk(r,:)));
% Error back propagationI
Dk=(bpout(r,:)-Ok(r,:)).*Ok(r,:).*( I -Ok(r,:));
DWkj-DWkj+eta*Oj(r,:)9 *Dk;

DTHETAk=DTHETAk+eta*Dk;U
Dj=Oj(r,:).*(l 1 Oj(r,:)).(Dk*Wkj');
DWji=DWji+etabpin(r,:)'*Dj;
DTHETAj=DTHETAj+eta*Dj;

endI
% first, the connections to the K output neurons
Wkj=Wkj+DWkj;
if quan=-I, Wkj-discret(Wkj ,ss,hr); endI
if inject--I, Wkj-addnoise(Wkj,nsprd); end
if inject.--2, Wkj-addgauss(Wkj ,var); end
THETAk=THETAk+DTHETAk;
if quan-=I, THETA k-discret(THETA k,ss, hr); end
if inject== I, THETA k=addnoise(TH ETA k ,nsprd); end
if inject--2, THETAk-addgauss(THETAk ,var); end
% then, those to the J neurons in the hidden layerI
Wji-Wji+DWji;
if quan--!, Wji-discret(Wji,ss,hr); end

if inject--I, Wji-addnoise(Wji,nsprd); endI
if inject--2, Wji-addgauss(Wji,var); end
THETAj=THETAj+DTHETAj;
if quan-- 1, THETAj-discret(THETL'Aj ,ss,hr-); end
if inject--I, THETAj-addnoise(THETAj,nsprd); endI
if inject--2, THETAj-addgauss(THETAj ,var); end
% Forward Pass
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NETj-[bpin,ones(R,1 )J*[Wji;THETAj];
Oj-I ./(1+exp(-NETj));
NETk=[Oj,ones(R, 1 )]*[Wkj;THETAkI;
Ok-i .1(1 +exp(-NETk));
n
detmse(n-DNfix((n- I )/DN))=sum(meanc((Ok- bpout).A 2));
if rem(n,DN)==O

ldetmse(n/DN+ I )-mean(detmse);
disp('convergence check')
% based on mse over r, not individuals
if Idetmse(n/DN+ I)<=msetol

disp('less detailed mse within tolerance')
break

end
noff(n/DN+ 1)=sum(sum((abs(Ok-bpout)>O.4)));

end
end

discret~m

function db=discret(in,stepsize,hr)
% out-discretize(n,stepsize,hr)

" This function quantizes the vector n to one of
% range/stepsize + 1 levels equally spaced between
" +hr (half the range) and -hr.
" discretize
in=in/stepsize;
in=round(in);
in-stepsizein;
% bind
db--(in<=-hr).*hr+(abs(in)<hr).in+(in>=hr).*hr;

addnoise.m

function ny-addnoise(in,spread)
% out=addnoise(in,spread)

" This function adds small random numbers
" (between spread/2 and -spread/2) to each of
" the elements in in.
[nr,nc]-size(in);
ny-in+(rand(nr,nc)- I ./2)*spread;

function ny-addgauss(in,var)
% out-addgauss(in,spread)

" This function adds small random numbers
" with a normal probability distribution
% to each of the elements in in.
" NOTE: It is ASSUMED here that the user has
" already switched the rand mode to 'normal';
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% the default is uniform.
[nr,nc]=size(in);
ny=in+var* rand(nr,nc); 3
convtoi.m

function out=convtoi(a,v)
% This function takes a vector a and
% returns a matrix of dimensions ncols(a)/v by v.
a=a(:)';
out=zeros(v,ncols(a)/v);
out(:)=a;
out=out'; 3
convtov.m

function out=convtov(v) I
% This function takes a matrix a and
% returns a row vector of dimensions 1 by
% nrows(a)*ncols(a)
a=a,;

out=a(:)';

mganc.m

function s=meanc(in)
% out- neanc(in) 3
%

% This function returns a column vector with the mean of
0/ each row of lia. This includes the case where in has but
% one column (i.e., it won't then return the scalar). I
% So it's not strictly the transpose of mean.

if ncols(in)==I 1
s=in;

else
s=(mean(in'))';

end

sumc~m3

function s-sumc(in)
% out=sumc(in)

% This function returns a column vector with the sum of
% each row of in. This includes the case where in has but
% one column (i.e., it won't then return the scalar).
% So it's not strictly the transpose of sum.

if ncols(in)=- I
s-in; I

else
s-(sum(in'))';

end

36 I


